» » Как решать однородные системы. Решение систем линейных алгебраических уравнений, методы решения, примеры. Проработать лекции на темы

Как решать однородные системы. Решение систем линейных алгебраических уравнений, методы решения, примеры. Проработать лекции на темы

Система m линейных уравнений c n неизвестными называется системой линейных однородных уравнений, если все свободные члены равны нулю. Такая система имеет вид:

где а ij (i = 1, 2, …, m ; j = 1, 2, …, n ) - заданные числа; х i – неизвестные.

Система линейных однородных уравнений всегда совместна, так как r (А) = r (). Она всегда имеет, по крайней мере, нулевое (тривиальное ) решение (0; 0; …; 0).

Рассмотрим при каких условиях однородные системы имеют ненулевые решения.

Теорема 1. Система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг её основной матрицы r меньше числа неизвестных n , т.е. r < n .

1). Пусть система линейных однородных уравнений имеет ненулевое решение. Так как ранг не может превосходить размера матрицы, то, очевидно, r n . Пусть r = n . Тогда один из миноров размера n n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: , , . Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r < n .

2). Пусть r < n . Тогда однородная система, будучи совместной, является неопределённой. Значит, она имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Рассмотрим однородную систему n линейных уравнений c n неизвестными:

(2)

Теорема 2. Однородная система n линейных уравнений c n неизвестными (2) имеет ненулевые решения тогда и только тогда, когда её определитель равен нулю: = 0.

Если система (2) имеет ненулевое решение, то = 0. Ибо при система имеет только единственное нулевое решение. Если же = 0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r < n . И, значит, система имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Обозначим решение системы (1) х 1 = k 1 , х 2 = k 2 , …, х n = k n в виде строки .

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка - решение системы (1), то и строка - решение системы (1).

2. Если строки и - решения системы (1), то при любых значениях с 1 и с 2 их линейная комбинация - тоже решение системы (1).

Проверить справедливость указанных свойств можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы.

Система линейно независимых решений е 1 , е 2 , …, е р называется фундаментальной , если каждое решение системы (1) является линейной комбинацией этих решений е 1 , е 2 , …, е р .

Теорема 3. Если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений (1) меньше числа переменных n , то всякая фундаментальная система решений системы (1) состоит из n – r решений.

Поэтому общее решение системы линейных однородных уравнений (1) имеет вид:

где е 1 , е 2 , …, е р – любая фундаментальная система решений системы (9), с 1 , с 2 , …, с р – произвольные числа, р = n – r .

Теорема 4. Общее решение системы m линейных уравнений c n неизвестными равно сумме общего решения соответствующей ей системы линейных однородных уравнений (1) и произвольного частного решения этой системы (1).

Пример. Решите систему

Решение. Для данной системы m = n = 3. Определитель

по теореме 2 система имеет только тривиальное решение: x = y = z = 0.

Пример. 1) Найдите общее и частные решения системы

2) Найдите фундаментальную систему решений.

Решение. 1) Для данной системы m = n = 3. Определитель

по теореме 2 система имеет ненулевые решения.

Так как в системе только одно независимое уравнение

x + y – 4z = 0,

то из него выразим x =4z - y . Откуда получим бесконечное множество решений: (4z - y , y , z ) – это и есть общее решение системы.

При z = 1, y = -1, получим одно частное решение: (5, -1, 1). Положив z = 3, y = 2, получим второе частное решение: (10, 2, 3) и т.д.

2) В общем решении (4z - y , y , z ) переменные y и z являются свободными, а переменная х – зависимая от них. Для того, чтобы найти фундаментальную систему решений, придадим свободным переменным значения: сначала y = 1, z = 0, затем y = 0, z = 1. Получим частные решения (-1, 1, 0), (4, 0, 1), которые и образуют фундаментальную систему решений.

Иллюстрации :

Рис. 1 Классификация систем линейных уравнений

Рис. 2 Исследование систем линейных уравнений

Презентации:

· Решение СЛАУ_матричный метод

· Решение СЛАУ_метод Крамера

· Решение СЛАУ_метод Гаусса

· Пакеты решения математических задач Mathematica, MathCad : поиск аналитического и числового решения систем линейных уравнений

Контрольные вопросы :

1. Дайте определение линейного уравнения

2. Какой вид имеет система m линейных уравнений с n неизвестными?

3. Что называется решением систем линейных уравнений?

4. Какие системы называются равносильными?

5. Какая система называется несовместной?

6. Какая система называется совместной?

7. Какая система называется определенной?

8. Какая система называется неопределенной

9. Перечислите элементарные преобразования систем линейных уравнений

10. Перечислите элементарные преобразования матриц

11. Сформулируйте теорему о применении элементарных преобразований к системе линейных уравнений

12. Какие системы можно решать матричным методом?

13. Какие системы можно решать методом Крамера?

14. Какие системы можно решать методом Гаусса?

15. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Гаусса

16. Опишите матричный метод решения систем линейных уравнений

17. Опишите метод Крамера решения систем линейных уравнений

18. Опишите метод Гаусса решения систем линейных уравнений

19. Какие системы можно решать с применением обратной матрицы?

20. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Крамера

Литература :

1. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н.Фридман. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2005. – 471 с.

2. Общий курс высшей математики для экономистов: Учебник. / Под ред. В.И. Ермакова. –М.: ИНФРА-М, 2006. – 655 с.

3. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред.В.И. Ермакова. М.: ИНФРА-М, 2006. – 574 с.

4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и магматической статистике. - М.: Высшая школа, 2005. – 400 с.

5. Гмурман. В.Е Теория вероятностей и математическая статистика. - М.: Высшая школа, 2005.

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. – М.: Оникс 21 век: Мир и образование, 2005. – 304 с. Ч. 1; – 416 с. Ч. 2.

7. Математика в экономике: Учебник: В 2-х ч. / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандара. – М.: Финансы и статистика, 2006.

8. Шипачев В.С. Высшая математика: Учебник для студ. вузов – М.: Высшая школа, 2007. – 479 с.


Похожая информация.


Линейная система называется однородной , если все ее свободные члены равны 0.

В матричном виде однородная система записывается:
.

Однородная система (2) всегда совместна . Очевидно, что набор чисел
,
, …,
удовлетворяет каждому уравнению системы. Решение
называетсянулевым илитривиальным решением. Таким образом, однородная система всегда имеет нулевое решение.

При каких условиях однородная система (2) будет иметь ненулевые (нетривиальные) решения?

Теорема 1.3 Однородная система (2)имеет ненулевые решения тогда и только тогда, когда рангr ее основной матрицыменьше числа неизвестныхn .

Система (2) – неопределенная
.

Следствие 1. Если число уравненийm однородной системы меньше числа переменных
, то система является неопределенной и имеет множество ненулевых решений.

Следствие 2. Квадратная однородная система
имеет ненулевые решения тогда и тогда, когда основная матрица этой системывырождена, т.е. определитель
.

В противном случае, если определитель
, квадратная однородная система имеетединственное нулевое решение
.

Пусть ранг системы (2)
т. е система (2) имеет нетривиальные решения.

Пусть и- частные решения этой системы, т.е.
и
.

Свойства решений однородной системы


Действительно, .


Действительно, .

Объединяя, свойства 1) и 2), можно сказать, что если

…,
- решения однородной системы (2), то и всякая их линейная комбинация- также является ее решением. Здесь
- произвольные действительные числа.

Можно найти
линейно независимых частных решений однородной системы (2), с помощью которых можно получить любое другое частное решение данной системы, т.е. получить общее решение системы (2).

Определение 2.2 Совокупность
линейно независимых частных решений

…,
однородной системы (2) таких, что каждое решение системы (2) можно представить в виде их линейной комбинации, называетсяфундаментальной системой решений (ФСР) однородной системы (2).

Пусть

…,
- фундаментальная система решений, тогда общее решение однородной системы (2) можно представить в виде:

Где

.

Замечание. Чтобы получить ФСР, нужно найти частные решения

…,
, придавая поочередно какой-либо одной свободной переменной значение «1», а всем остальным свободным переменным – значения «0».

Получим ,, …,- ФСР.

Пример. Найти общее решение и фундаментальную систему решений однородной системы уравнений:

Решение. Запишем расширенную матрицу системы, предварительно поставив на первое место последнее уравнение системы, и приведем ее к ступенчатому виду. Поскольку правые части уравнений в результате элементарных преобразований не меняются, оставаясь нулями, столбец

можно не выписывать.

̴
̴
̴

Ранг системы где
- число переменных. Система неопределенная, имеет множество решений.

Базисный минор при переменных
отличен от нуля:
выбираем
в качестве базисных переменных, остальные
- свободные переменные (принимают любые действительные значения).

Последней в цепочке матрице соответствует ступенчатая система уравнений:

(3)

Выразим базисные переменные
через свободные переменные
(обратный ход метода Гаусса).

Из последнего уравнения выразим :
и подставим в первое уравнение. Получим. Раскроем скобки, приведем подобные и выразим:
.

Полагая
,
,
, где
, запишем

- общее решение системы.

Найдем фундаментальную систему решений

,,.

Тогда общее решение однородной системы можно записать в виде:

Замечание. ФСР можно было найти другим путем, без предварительного отыскания общего решения системы. Для этого полученную ступенчатую систему (3) нужно было решить трижды, полагая для:
; для:
; для:
.

2.4.1. Определение. Пусть дана неоднородная система линейных уравнений

Рассмотрим однородную систему

у которой матрица коэффициентов совпадает с матрицей коэффициентов системы (2.4.1). Тогда система (2.4.2) называется приведённой однородной системы (2.4.1).

2.4.2. Теорема. Общее решение неоднородной системы равно сумме некоторого частного решения неоднородной системы и общего решения приведённой однородной .

Таким образом, для нахождения общего решения неоднородной системы (2.4.1) достаточно:

1) Исследовать её на совместность. В случае совместности:

2) Найти общее решение приведённой однородной этой системы.

3) Найти какое-либо частное решение исходной (неоднородной).

4) Сложив найденные частное решение и общее решения приведённой, найти общее решение исходной системы.

2.4.3. Упражнение. Исследовать систему на совместность и в случае совместности найти её общее решение в виде суммы частного и общего приведённого.

Решение. а) Для решения задачи применяем вышеуказанную схему:

1) Исследуем систему на совместность (методом окаймления миноров): Ранг основной матрицы равен 3 (см. решение упр. 2.2.5, а), причём ненулевой минор максимального порядка составлен из элементов 1-й, 2-й, 4-й строк и 1-го, 3-го, 4-го столбцов. Для нахождения ранга расширенной матрицы окаймляем его 3-ей строкой и 6-м столбцом расширенной матрицы: =0. Значит, rgA =rg =3, и система совместна. В частности, она равносильна системе

2) Найдём общее решение X 0 приведённой однородной этой системы

X 0 ={(-2a - b ; a ; b ; b ; b ) | a , b ÎR }

(см. решение упр. 2.2.5, а)).

3) Найдём какое-либо частное решение x ч исходной системы . Для этого в системе (2.4.3), равносильной исходной, свободные неизвестные x 2 и x 5 полагаем равными, например, нулю (это наиболее удобные данные):

и решаем полученную систему: x 1 =- , x 3 =- , x 4 =-5. Таким образом, (- ; 0; - ; -5; 0) ¾ частное решение системы.

4) Находим общее решение X н исходной системы :

X н ={x ч }+X 0 ={(- ; 0; - ; -5; 0)} + {(-2a - b ; a ; b ; b ; b )}=

={(- -2a - b ; a ; - + b ; -5+b ; b )}.

Замечание. Сравните полученный ответ со вторым ответом в примере 1.2.1 в). Для получения ответа в первом виде для 1.2.1 в) в качестве базисных неизвестных берутся x 1 , x 3 , x 5 (минор при которых тоже не равен нулю), а в качестве свободных ¾ x 2 и x 4 .

§3. Некоторые приложения.

3.1. К вопросу о матричных уравнениях. Напоминаем, что матричным уравнением над полем F называется уравнение, в котором в качестве неизвестной выступает некоторая матрица над полем F .


Простейшими матричными уравнениями являются уравнения вида

AX =B , XA =B (2.5.1)

где A , B ¾ данные (известные) матрицы над полем F , а X ¾ такие матрицы, при подстановке которых уравнения (2.5.1) обращаются в верные матричные равенства. В частности, матричный метод определённых систем сводится к решению матричного уравнения.

В случае, когда матрицы A в уравнениях (2.5.1) невырожденны, они имеют решения соответственно X =A B и X =BA .

В случае, когда хотя бы одна из матриц в левой части уравнений (2.5.1) является вырожденной, данный метод уже не годится, так как соответствующая обратная матрица A не существует. В этом случае нахождение решений уравнений (2.5.1) сводится к решению систем.

Но прежде введём некоторые понятия.

Множество всех решений системы назовём общим решением . Отдельно взятое решение неопределённой системы назовём её частным решением .

3.1.1. Пример. Решитьматричное уравнение над полем R .

а) X = ; б) X = ; в) X = .

Решение. а) Так как =0, то формула X =A B для решения этого уравнения не годится. Если в произведении XA =B матрица A имеет 2 строки, то матрица X имеет 2 столбца. Число строк X должно совпасть с числом строк B . Поэтому X имеет 2 строки. Таким образом, X ¾ некоторая квадратная матрица второго порядка: X = . Подставим X в исходное уравнение:

Перемножая матрицы в левой части (2.5.2), приходим к равенству

Две матрицы равны тогда и только тогда, когда они одинаковых размерностей и равны их соответствующие элементы. Поэтому (2.5.3) равносильно системе

Эта система равносильна системе

Решая её, например, методом Гаусса, приходим к множеству решений (5-2b , b , -2d , d ), где b , d независимо друг от друга пробегают R . Таким образом, X = .

б) Аналогично а) имеем X = и.

Эта система несовместна (убедитесь в этом!). Поэтому данное матричное уравнение решений не имеет.

в) Обозначим это уравнение через AX =B . Так как A имеет 3 столбца, а B имеет 2 столбца, то X ¾ некоторая матрица размерности 3´2: X = . Поэтому имеем следующую цепочку равносильностей:

Решаем последнюю систему методом Гаусса (комментарии опускаем)

Таким образом, приходим к системе

решением которой является (11+8z , 14+10z , z , -49+8w , -58+10w , w ) где z , w пробегают независимо друг от друга R .

Ответ: а) X = , b , d ÎR .

б) Решений нет.

в) X = z , w ÎR .

3.2. К вопросу о перестановочности матриц. В общем случае произведение матриц неперестановочно, то есть если A и B такие, что AB и BA определены, то, вообще говоря, AB ¹BA . Но пример единичной матрицы E показывает, что возможна и перестановочность AE =EA для любой матрицы A , лишь бы AE и EA были определены.

В этом пункте мы рассмотрим задачи на нахождение множества всех матриц, перестановочных с данной. Таким образом,

Неизвестные x 1 , y 2 и z 3 могут принимать любые значения: x 1 =a , y 2 =b , z 3 =g . Тогда

Таким образом, X = .

Ответ. а) X d ¾ любое число.

б) X ¾ множество матриц вида , где a , b и g ¾ любые числа.

Системы линейных однородных уравнений - имеет вид ∑a k i x i = 0. где m > n или m Однородная система линейных уравнений всегда совместна, так как rangA = rangB . Она заведомо имеет решение, состоящее из нулей, которое называется тривиальным .

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

Инструкция . Выберите размерность матрицы:

Свойства систем линейных однородных уравнений

Для того чтобы система имела нетривиальные решения , необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Теорема . Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема . Любая линейная комбинация решений системы также является решением этой системы.
Определение . Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений , если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из (n-r) решений.

Алгоритм решения систем линейных однородных уравнений

  1. Находим ранг матрицы.
  2. Выделяем базисный минор. Выделяем зависимые (базисные) и свободные неизвестные.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из r уравнений с r неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Решаем полученную систему методом исключения неизвестных. Находим соотношения, выражающие зависимые переменные через свободные.
  6. Если ранг матрицы не равен количеству переменных, то находим фундаментальное решение системы.
  7. В случае rang = n имеем тривиальное решение.

Пример . Найти базис системы векторов (а 1 , а 2 ,...,а m), ранг и выразить векторы по базе. Если а 1 =(0,0,1,-1), а 2 =(1,1,2,0), а 3 =(1,1,1,1), а 4 =(3,2,1,4), а 5 =(2,1,0,3).
Выпишем основную матрицу системы:


Умножим 3-ую строку на (-3). Добавим 4-ую строку к 3-ой:
0 0 1 -1
0 0 -1 1
0 -1 -2 1
3 2 1 4
2 1 0 3

Умножим 4-ую строку на (-2). Умножим 5-ую строку на (3). Добавим 5-ую строку к 4-ой:
Добавим 2-ую строку к 1-ой:
Найдем ранг матрицы.
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
- x 3 = - x 4
- x 2 - 2x 3 = - x 4
2x 1 + x 2 = - 3x 4
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 , то есть нашли общее решение:
x 3 = x 4
x 2 = - x 4
x 1 = - x 4

Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными (p может быть равно n ) вида

Неизвестные переменные, - коэффициенты (некоторые действительные или комплексные числа), - свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной .

В матричной форме записи эта система уравнений имеет вид ,
где - основная матрица системы, - матрица-столбец неизвестных переменных, - матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество .

Если система уравнений имеет хотя бы одно решение, то она называется совместной .

Если система уравнений решений не имеет, то она называется несовместной .

Если СЛАУ имеет единственное решение, то ее называют определенной ; если решений больше одного, то – неопределенной .

Если свободные члены всех уравнений системы равны нулю , то система называется однородной , в противном случае – неоднородной .

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными . Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

Пример.

Методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель (при необходимости смотрите статью ):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам :

Ответ:

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Пример.

Решите систему линейных уравнений матричным методом.

Решение.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как .

Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью ):

Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов (при необходимости смотрите статью ):

Ответ:

или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находится x n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Пример.

Решите систему линейных уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x 3 :

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Ответ:

X 1 = 4, x 2 = 0, x 3 = -1 .

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли :
для того, чтобы система из p уравнений с n неизвестными (p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения.

Решение.

. Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, Rang(A) , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

Система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным .

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

    Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

    Пример.

    .

    Решение.

    Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю

    а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

    В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

    Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

    Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

    Ответ:

    x 1 = 1, x 2 = 2 .

    Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

    Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными .

    Неизвестные переменные (их n - r штук), которые оказались в правых частях, называются свободными .

    Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

    Разберем на примере.

    Пример.

    Решите систему линейных алгебраических уравнений .

    Решение.

    Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем a 1 1 = 1 . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

    Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

    Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

    Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

    Для наглядности покажем элементы, образующие базисный минор:

    Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

    Придадим свободным неизвестным переменным x 2 и x 5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид

    Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

    Следовательно, .

    В ответе не забываем указать свободные неизвестные переменные.

    Ответ:

    Где - произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Смотрите его подробное описание и разобранные примеры в статье метод Гаусса для решения систем линейных алгебраических уравнений общего вида .

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность (n – r) линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами С 1 , С 2 , …, С (n-r) , то есть, .

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула задает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных С 1 , С 2 , …, С (n-r) , по формуле мы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как .

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) - первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде .

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где - общее решение соответствующей однородной системы, а - частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Пример.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений .

Решение.

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент a 1 1 = 9 основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем . Отметим для наглядности элементы системы, которые его образуют:

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения x 2 = 1, x 4 = 0 , тогда основные неизвестные найдем из системы уравнений
.